Journal of Organometallic Chemistry, 117 (1976) C75–C80 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

STRUCTURE OF trans-W(CO)₄ (CNC₆H₁₁)(CS) AND A CORRELATION OF ν (CS) FREQUENCIES WITH C-S BOND DISTANCES IN METAL

THIOCARBONYL COMPLEXES*

SCOTT S. WOODARD, ROBERT A. JACOBSON AND ROBERT J. ANGELICI

Ames Laboratory-ERDA and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (U.S.A.)

(Received June 1st, 1976)

SUMMARY

An X-ray structural investigation of <u>trans-W(CO)₄(CNC₆H₁₁)(CS)</u> shows that the W-C bond distances to the 3 isoelectronic ligands increase in the order: W-CS(1.944Å) < W-CO(2.0645Å, average) < W-CNC₆H₁₁(2.158Å). Using data from this molecule as well as results from other thiocarbonyl complexes reported in the literature, an excellent correlation of low ν (CS) frequencies with long C-S bond distances is observed, a trend which supports current bonding theories for thiocarbonyl complexes.

The X-ray structural investigation of $trans-W(CO)_4(CNC_6H_{11})(CS)$ was undertaken in order to allow a direct comparison of W-C bond distances to carbon monosulfide, carbon monoxide and cyclohexylisocyanide ligands. In addition, it has provided results which allow the correlation of

^{*}Prepared for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82.

 $\nu(\text{CS})$ frequencies with C-S bond distances previously reported in the literature.

The complex was prepared by the reaction of trans- $W(CO)_4(I)(CS)^$ with Ag⁺ in acetone solution followed by the addition of cyclohexylisocyanide [1]. Crystals were grown from pentane solution at -20°C. and a single crystal was selected for X-ray diffraction study. Use of an automatic indexing routine coupled with analysis of oscillation photographs indicated a monoclinic crystal system, and the space group P21/n was uniquely specified by the extinction conditions. The unit ce parameters are a = 11.645(3), b = 21.205(6), and c = 6.146(3)Å, $\beta = 92.10(5)$ Intensity data were collected on a computer-controlled four circle diffractometer equipped with a scintillation counter utilizing graphitemonochromated Mo Ka radiation. Data were corrected for absorption, and positions of all non-hydrogen atoms were determined by a combination of Patterson analysis and electron density map calculations. Figure 1 show a computer drawing (excluding hydrogens) of the molecular structure resulting from refinement to a conventional crystallographic discrepancy factor of R = 6.5% based on 1862 intensities with I > $3\sigma(I)$.

Of the W-C bond distances (in Å), the W-CS value of 1.944(19) is the shortest. The W-CO distances are longer: W-C₁, 2.066(23); W-C₂, 2.056(22); W-C₃, 2.089(28); W-C₄, 2.047(22). The W-CNC₈H₁₁ distance is the longest at 2.158(23). This trend supports other arguments [2] which indicate that metal-to-ligand π back-bonding decreases in the order: W-CS > W-CO > W-CNC₈H₁₁.

The C-S distance is 1.564(19), and the W-C₅-S angle is essentially linear, $179.0(1.2)^{\circ}$. The C₆-N and N-C₇ distances are 1.160(24) and 1.535(27), respectively, and the W-C₆-N and C₆-N-C₇ angles are 175.5(2.1)and $173.4(2.2)^{\circ}$, respectively. The C-O bond distances range from 1.104 to 1.155(26), and the W-C-O angles range from 176.2 to 179.3(1.9)

Figure 1. Molecular configuration of $t_{rans}-W(CO)_4(CNC_6H_{11})(CS)$.

The geometry around the W is octahedral with all C-W-C angles being $90.0 \pm 2.8^{\circ}$.

The bonding of CO, CNR, and CS to transition metals is postulated to involve π back-bonding from the metal $d\pi$ orbitals to the π * orbitals on the ligands. Such back-bonding should weaken the C-X bond resulting in decreased C-X stretching frequencies, as well as increased C-X bond lengths. Because of the very small changes [3] observed in C-O bond distances in metal carbonyl complexes with different electronic environments, it has not been possible to confirm these theoretical predictions using C-O bond length data. Fortunately, this confirmatory evidence is now available for thiocarbonyl complexes.

X-Ray structural determinations for 5 complexes containing terminal thiocarbonyl ligands are now available (Table 1). As for CO, π -bonding

arguments for thiocarbonyl complexes suggest that complexes with low $\nu(CS)$ frequencies should have long C-S bond distances. In Figure 2 is shown a plot of $\nu(CS)$ <u>versus</u> C-S bond distances for these complexes While the errors in C-S distance are reasonably large in complexes wit the heavier metals, the correlation is unmistakeable. Those complexes with the least available metal π -orbital electron density (such as the cationic complexes <u>1</u> and <u>2</u>) have the shortest C-S distances, while mor electron-rich metal complexes have longer C-S distances.

Although not indicated in Figure 2, even $\nu(CS)$ and C-S distance data (Table 1), for free gaseous CS fall close to the least squares li shown in the Figure. The data in Table 1 show that there are complexe in which $\nu(CS)$ is higher and the C-S distance is shorter than in free CS itself. This observation supports molecular orbital arguments [2b, 15] which indicate that the σ -donor electrons of CS are antibondi

No.	Compound	ν(C-S),cm ⁻¹	C-S,Å
1	$[(\eta - C_{5}H_{5})Fe(CO)_{2}(CS)]PF_{6}$	1348 ^a	1.501(4) ^b
2	$[Ir(PPh_3)_2(CO)_2(CS)]PF_6$	1321 ^c	1.512(26), 1.509(24
3	trans-RhCl(PPh3)2(CS)	1299 ^e	1.536(10) ^f
4	\underline{trans} -W(CO) ₄ (CNC ₆ H ₁₁)(CS)	1240 ^g ,h	1.564(19) ^h
5	$(\eta - C_6 H_5 CO_2 CH_3) Cr(CO)_2(CS)$	1225 ¹	1.570(2) ^j
	CS	1274 ^k	1.5349(2) ¹
	\underline{cis} -[(η -C ₅ H ₅)Fe(CO)(CS)] ₂	1124 ^m ,n	$1.592(8), 1.587(7)^{1}$
	· · ·		

TABLE 1. C-S BOND DISTANCES AND v(CS) FREQUENCIES

^aNujol, ref. 4. ^bRef. 5. ^cCHCl₃, ref. 6. ^dRef. 7. ^eC₆H₆, ref. 8. ^fRef. 9. ^gCS₂. ^hThis work. ⁱCCl₄, ref. 10. ^jRef. 11. ^kRef. 12. ^lRef. 13. ^mCS₂. ⁿRef. 14.

Figure 2. Correlation of v(CS) frequencies and C-S bond distances for the compounds numbered in Table 1.

with respect to the CS bond. Thus, in complexes where there is reduced π -bonding, σ -donor effects will predominate and strengthen the C-S bond.

While data [14] for the <u>bridging</u> CS groups in <u>cis</u>-[$(\eta$ -C₅H₅)Fe(CO)-(CS)]₂ are included in Table 1, they do not fall on a linear extrapolation of the line in Figure 2. Nevertheless, the correlation provides a useful method of obtaining C-S bond distances from v(CS) frequencies for complexe with terminal thiocarbonyl ligands.

<u>Acknowledgment</u> - R.J.A. appreciates the partial support of this research by the Alfred P. Sloan Foundation and the National Science Foundation.

÷

REFERENCES

- 1. B.D. Dombek and R.J. Angelici, Inorg. Chem., 15, (1976) 1089.
- 2. (a) P.M. Treichel, <u>Advances in Organometallic Chemistry</u>, <u>11</u> (1973) 21.
 (b) W.G. Richards, Trans. Faraday Soc., 63 (1967) 257.
 - (b) W.G. Richards, <u>Trans. Faraday</u> Soc., <u>63</u> (1967) 257. (c) A.C. Sarapu and R.F. Fenske, <u>Inorg. Chem.</u>, <u>14</u>, (1975) 247.
- 3. F.A. Cotton and R.M. Wing, Inorg. Chem., 4 (1965) 314.
- L. Busetto and R.J. Angelici, J. Amer. Chem. Soc., 90 (1968) 3283.
 L. Busetto, U. Belluco, and R.J. Angelici, J. Organometal. Chem., 18 (1969) 213. B.D. Dombek and R.J. Angelici, <u>Inorganic Syntheses</u>, <u>17</u>, to be published.
- 5. R.A. Jacobson and J. Blaha, to be published.
- 6. M.J. Mays and F.P. Stefanini, J. Chem. Soc. (A), (1971) 2747.
- 7. J.S. Field and P.J. Wheatley, J. Chem. Soc. Dalton, (1972) 2269.
- 8. M.C. Baird, G. Hartwell, and G. Wilkinson, <u>J. Chem. Soc. (A)</u>, (1967) 2037.
- 9. J.L. deBoer, D. Rogers, A.C. Skapski, and P.G.H. Troughton, <u>Chem</u>. <u>Commun.</u>, (1966) 757.
- 10. G. Jaouen, Tetrahedron Letters, (1973) 5159.
- 11. J.-Y. Saillard, G. LeBorgne, and D. Grandjean, <u>J. Organometal. Chem.</u>, <u>94</u> (1975) 409.
- 12. R. Steudel, Z. Naturforsch., 21b (1966) 1106.
- 13. R.C. Mockler and G.R. Bird, Phys. Rev., 98 (1955) 1837.
- 14. J.W. Dunker, J.S. Finer, J. Clardy and R.J. Angelici, <u>J. Organometal</u>. <u>Chem</u>., submitted for publication.
- 15. D.L. Lichtenberger and R.F. Fenske, Inorg. Chem., to be published.